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Introduction

Epidemics of contagious diseases have the potential
to wipe out entire populations. While medicine is mak-
ing enormous advances in finding ways to treat and cure
many of these diseases, it is perhaps equally important
to develop ways to curtail their spread by disrupting in-
fectious contacts. Effective vaccine distribution, partic-
ularly when resources are scarce, as well as educating
groups and individuals on how to react to the presence
of a disease threat, can radically diminish the chance of
a disease epidemic.

In this respect, epidemic models can be enormously
helpful in understanding the rate at which diseases
spread and how to control them. For these models to be
most effective, however, they have to be able to take into
account that individuals and groups will adapt their be-
havior as they gain more information. This is an increas-
ingly relevant factor as radio, television, and the internet
speed up the rate at which people learn about a disease
threat and how best to avoid catching and spreading it
further. If the latest scare over the H1N1 (swine flu)
virus is any indication, people appear to be more con-
scious than ever of epidemics. Whether the information
that is delivered by the media is accurate is in itself an
important issue, but regardless, it is clear that in many
cases, people will attempt to reduce their chances of in-
fection by taking actions to eliminate contact with con-
tagious individuals, or through available vaccination.
This sort of social adaptation on the level of an individ-
ual can change the dynamics of the social contact net-
work, which in turn alters the progression of disease.

Behavioral epidemiology is defined here to be the
study of the effects of social response to the threat of
disease. In this article, we will discuss recent progress in
designing network models that can account for “adap-
tive behavior” and tackle the problem of the spread of
infectious diseases in a dynamic population. We start by
giving an overview of simpler models, where the pop-
ulation is assumed to be homogeneous, and show how

to progressively make these models more complex and
realistic: first by considering that distinct demograph-
ics may behave differently, then that interactions along
particular “links” in the network may change with time,
and ultimately, allowing the network itself to “rewire”
to reflect the way humans modify their social contact be-
havior.

These networks are designed to model the real-world
problem of disease spread, but at their roots are the com-
putational tools developed in the fields of mathematical
biology and statistical physics. The spread of an epi-
demic is often assumed to be a stochastic process, and
just as in a many-body statistical system, it is possible to
find phase transitions. (As an example, the phase tran-
sition, or “threshold,” at which diseases begin to spread
across the entire network is often approached via per-
colation theory.) For this reason, epidemiological mod-
els rely on progress in solving problems in statistical
physics and, since the models can be tested against real
observations from data, also provide important feed-
back on these physics ideas.

Homogeneous spatial modeling

Our understanding of how infectious disease epi-
demics evolve in populations has a long and varied
history that dates back to the eighteenth century [1].
Two important modern developments have helped re-
fine our understanding of disease propagation and the
occurrence of disease outbreaks: the invention of high
speed computing, which can analyze data on large spa-
tial geographic scales as well as demographic data, and
progress in designing models that more truly reflect hu-
man behavior.

Deterministic mathematical models have been used
since the time of Bernoulli [2] to understand the spread
of infectious diseases such as smallpox in large, uniform
populations. These early epidemic models assumed that
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the population was homogeneous, meaning it was well
mixed spatially. In this sense, since all individuals be-
haved like the average, the models could be consid-
ered “mean-field.” Models based on mean-field dynam-
ics describe infectious transmission from one individual
to another via nonlinear mass action terms [3], where
a susceptible (S) individual comes into contact with an
infectious (I) individual. Models are named according
to how individuals “flow” within them, such as SIS, in
which susceptibles become infected and then again sus-
ceptible, or SIR, where recovered or removed (R) in-
dividuals are immune. Despite their simplicity, these
models were able to predict outbreaks of childhood dis-
eases [4]. In general, however, deterministic models on
uniform populations are not sufficient to account for
some of the important stochastic dynamics that occur in
finite populations. These include extinction, where the
infectious population vanishes (as with smallpox) [5–
7], and sustained fluctuations or oscillations [8], where
oscillations having random amplitude persist in small
populations. This is often the case for childhood dis-
eases.

Demographic and spatial modeling

Allowing for populations to have some spatial or de-
mographic structure is necessary to explain other ob-
served dynamical phenomena, such as traveling waves
in single [9] and multistrain [10] diseases, and recurrent
outbreaks in network models [11]. There are different
approaches to relaxing the assumption that the popula-
tion is well mixed and homogeneous, all of which can
be applied on a variety of length scales [12]. For exam-
ple, a population can be broken down by age, gender,
or social action. This may come into play, for example,
when in order to model the transmission of HIV, one
considers common characteristics of people who share
needles [13]. The simplest way to handle this spatial
structure is to decompose the population into subpop-
ulations, each of which is connected to a subset of the
others (see Fig.1). These connections can be through mi-
gration, as when people in one subpopulation are trans-
ported into another by air travel [14]. Although these
models are “coarse grained,” meaning they still average
over portions of the population, they do yield signifi-
cantly different epidemic dynamics than homogeneous
populations. For example, they can predict small ampli-
tude, long-period outbreaks in a given subpopulation
[15], as well as fluctuations.

At a much finer level, what are called agent-based
models describe the detailed characteristics of each in-
dividual and how he or she affects the population. The
scale of the population in this type of epidemic model
may be as large as a city or as small as a classroom
[16]. As a subset of agent-based models, contact net-
work models provide detailed network structure among

FIG. 1: This schematic shows increasingly structured and com-
plex ways to model the spread of a disease in a population.
Each color represents a disease stage: susceptible, infected, or
recovered. (a) Homogeneous mixing models treat each indi-
vidual at a given disease stage in the same way as the average
of all others at that disease stage. Structure can be added by
decomposing populations into distinct demographic groups
(b), where the spread of a disease will depend on the particular
group. (c) In a contact network model, links connect individ-
uals while multiscale models (d) involve connections between
subpopulations. (e) Agent-based models can track individu-
als in very large populations on the order of cities the size of
Chicago. (Illustration: Carin Cain, after Ref. [12])

individuals [17] and may describe the effect of move-
ment among individuals. The connections between in-
dividuals at this level of detail may change in time as a
result of individual motion and decisions.

These large-scale descriptions of individuals through
contact and/or agent-based models rely on sizeable
databases of social interaction, and may be considered
social computing models. These models are extremely
valuable when studying the effects of changes to param-
eters, such as when to change a vaccine policy or how
much to increase the length of a school closing [18]. An-
alyzing the full social computing agent-based models
is, in general, quite difficult because of their large size
and the required computational complexity. For contact
models on a social network, however, some tools have
been developed to understand the population structure,
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such as community structure to reveal shared common
traits within a population network [19] and scaling laws
to predict epidemic rate of spread [20].

In almost all of these network models, the epidemic
propagates on a fixed, or static, network. The advantage
of this is that it is possible to figure out the threshold for
an epidemic to occur given the average properties of the
network, such as the number of connections coming out
of each node (i.e., the node “degree”). A few of the net-
work models predict oscillations and fluctuations due
to random transitions on the network. Fluctuations of
simple epidemic models have been simulated on large
networks [21–25].

The epidemic dynamics are typically studied as an SIS
or SIR model, in which the population is large and iso-
lated. Controls based on vaccination have been consid-
ered as well [26, 27] to control the size of the outbreak.
Although most of the epidemic models have fixed net-
work structure, several recent models have considered
epidemics on a network that changes structure dynam-
ically according to rules that do not depend on the epi-
demic status at a node [28, 29]. That is, the contact struc-
ture is time dependent but does not depend on the infec-
tion status of the individuals in the system. We will next
consider networks that adapt to the state of the system
as one of the new trends in epidemic modeling.

Adaptive networks

In general, many of the network models describing
outbreaks consider networks where the links and con-
tact structure don’t change with time. Yet in the pres-
ence of a natural or man-made biological threat, it is
highly probable that people will change their behavior.
Such an assumption holds if the population of healthy,
or susceptible, individuals knows the existence of in-
fectious individuals and adapts their behavior to avoid
contact with disease [30]. More frequent hand washing,
wearing a mask when contagious, and self-imposed iso-
lation are all examples of adaptive behavior in the pres-
ence of a disease. The implication is that not only does
the disease status of individuals change in time, but so
do the contacts. In fact, the change in disease status
causes a change in contact behavior.

We do note that many of the agent-based and mul-
tiscale models take into account distributions of hu-
man motion, thereby causing contacts that are time de-
pendent and heterogeneous. In contrast to the models
of a static network or models with externally applied
changes in structure, a new class of models based on
endemic populations on an adaptive network has been
recently introduced [30]. (For a recent review, see also
Ref. [31].) Changes to the network structure are made
in response to the epidemic spread and in turn affect fu-
ture spreading of the epidemic. Here, the important new
parameter is the rewiring rate of the network, which

FIG. 2: The basic components of an adaptive network model
describing disease spread. (Top) The rates at which a suscepti-
ble individual becomes infected, an infected individual recov-
ers, and a recovered individual becomes susceptible again are
given by p, r, and q, respectively. In an adaptive network (bot-
tom), the links between individuals at different stages of the
disease can change (rewire) to reflect the fact that, for example,
a susceptible may avoid contact with an infective. The rate at
which the network can rewire is described by the parameter
w. (Illustration: Carin Cain)

governs changes in the fraction of susceptible (S) to in-
fective (I) links. The network alters dynamically when
there are contacts between S and I, and social pressures
(the desire to avoid illness) rewire the contacts, replac-
ing them with noninfectious contacts (see Fig. 2). In
this way, infections are reduced because infectives be-
come isolated, and a new phenomenon occurs: for an
appropriate choice of parameters, it is possible to ob-
serve a bistability between the disease-free equilibrium
and an endemic state. In contrast, static networks in a
large population typically predict either a single attract-
ing endemic or disease-free state.

When modeling adaptive networks, one needs to de-
scribe the disease status of the individual as well as con-
tact behavior for each individual. Both nodes (people)
and links (contacts between people) must be modeled
as functions of time. Suppose we have S, I, and R states
available for each node. If a node in an infected state
is linked to a susceptible node, the avoidance behavior
says the S node should rewire by changing its link to
a noninfectious node, such as an S or R node. Since
the model is a finite population with random transi-
tions between contacts and states, we assume there is a
rewiring rate at which the new contacts are made proba-
bilistically [32]. Comparing the model with adaptive so-
cial behavior to the fixed contact models, the results are
quite dramatic. First, new attractors leading to bistabil-
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FIG. 3: Rewiring in an adaptive network affects the rate at
which individuals become infected. On the left, rewiring (bot-
tom left) reduces the fraction of infectious individuals I in a
finite population for a given infection rate p compared to the
case where there is no rewiring (top left). Rewiring also intro-
duces bistable behavior. On the right, rewiring (bottom right)
will also lead to different probability distributions in the num-
ber of connections (the degree) associated with an infective
(light grey), susceptible (black), or recovered (dashed). For ex-
ample, with no rewiring (top right) all disease stages have ap-
proximately the same probability for a given degree, but with
rewiring, infectives are most likely to have a lower degree than
susceptibles or recovereds. Reprinted from Ref. [32].

ity appear for small rewiring rates [30, 32–34]. (In Refs.
[33, 34], SI links are removed and susceptibles reconnect
to randomly selected nodes, independent of their infec-
tion status, but the results are qualitatively similar.) An
example of the behavior is shown in Fig. 3. In addition,
the size of the fluctuations increases, which may lead to
higher probabilities of disease extinction [32].

A complication is the possibility that individuals may
not have full knowledge of their own and others’ infec-
tion status. The presence of asymptomatic infectious in-
dividuals can occasionally lead to disease avoidance be-
havior being counterproductive [34]. Co-spreading of
an epidemic and awareness of the epidemic has been
considered, where the network structure was held fixed
but the connection strength reduced for nodes that were
aware of the need to protect themselves from the disease
[35]. This behavioral response increased the epidemic
threshold—the point at which one would say there is an
epidemic—and was most effective when the awareness
was transmitted on the same contact network as the in-
fection.

Vaccination on adaptive networks:
The road to enhanced extinction

Almost all diseases exhibit a certain amount of ran-
domness in how they spread, which results in fluctua-
tions in the number of disease cases—say, a time series
of disease cases exhibiting complex, possibly uncorre-
lated, local increases in the number of infectives. As dis-
eases evolve in large populations, there is the possibility
that they will become extinct in a finite time. Extinction
occurs when the number of infectives becomes so small
that there is insufficient transmission to keep the disease
in its endemic state. On the other hand, fade-outs are
defined as temporary local extinction, where infections
reappear through reintroduction of the disease. Fluctua-
tions cause the fade-out or extinct state to be reached in a
finite time. Populations based upon adaptive networks
further complicate the problem, since social dynami-
cal situations, such as disease avoidance strategies, can
cause both the endemic and extinct states to be bistable
[30, 32].

A major characteristic of fluctuation-induced extinc-
tion in globally connected, stochastic models for large
populations is the extinction rate. Viewing disease fade-
out as coming from a system far from thermal equilib-
rium, finite population extinction rate laws have been
derived in SIS [36, 37] and SIR [38] models. Recently,
non-Gaussian random vaccination (explained in greater
detail below) has been used to derive enhanced extinc-
tion rates in such stochastic models [7].

Vaccine strategies have also been considered for epi-
demics that spread along networks where the contacts
are static. Targeting high-degree nodes has been shown
to be more effective than random vaccination for scale
free networks [39, 40], small world networks [41], and
other social network geometries [42]. Since targeting the
highest degree nodes requires full knowledge of the net-
work geometry, related methods based on local knowl-
edge have been developed, as in Ref. [43].

Recently, we used a random non-Gaussian vaccina-
tion strategy and found that in conjunction with adap-
tive rewiring, it is extremely effective. We assumed that
pulsed vaccination was a Poisson process with fixed am-
plitude (fraction of susceptibles vaccinated) and a mean
frequency ν of application to the population. Figure
4 compares the effectiveness of a vaccine in a model
with (right) and without (left) network adaptivity. (See
Ref. [44] for details.) To eliminate disease, vaccination
should target susceptibles in the population. Because of
the adaptivity of the network, rewiring leads to suscep-
tibles with a higher degree on average. Random vacci-
nation of the susceptible population will automatically
tend to target higher degree nodes and is therefore ex-
pected to be much more effective than when applied to
a static network, where the high degree nodes are likely
to be infectious and not selected for vaccination.
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FIG. 4: Adaptive network models suggest that vaccinations
can be delivered at a lower frequency (ν). The plots show
the average infected fraction I versus ν for no rewiring (left)
and rewiring (right). Two orders of magnitude less vaccine is
needed to suppress infection in the adaptive network [44].

Conclusions and future research

In the presence of a disease—especially those that are
highly publicized—individuals and societies will adapt
their behavior. For example, during the 2002–2003 SARS
outbreak in China, people began washing their hands
more often and wearing masks [45] and those who were
sick sought out health services more frequently [46]. In
the language of networks, these can be considered be-
haviors that, respectively, reduce the effective strength
of links between individuals and change the contact net-
work itself.

New models of epidemics that make use of the adap-
tive behavior of the population will be able to make bet-
ter predictions of when an outbreak will occur. Prelimi-
nary analysis of the effect of vaccine controls that work
synergistically with the rewiring of the contact structure
may indeed lead to better strategies for eradicating dis-
eases. This may be especially true in the presence of
limited resources. We expect that combining adaptive
networks with other more complex population models
will help us better predict and avoid epidemics. More-
over, we expect that understanding adaptive responses
to a disease in a population will lead to new research di-
rections and contributions to the field of behavioral epi-
demiology.
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